Changes of nitrogen forms in a calcareous soil exposed to elevated CO₂ with two atmospheric temperature levels

G. H. Haghnia^A, A.Lakzian^A, A.Halajnia^A and A.Ramezanian^B

Abstract

Elevated carbon dioxide and other green house gases have increased the earth temperature in recent decades, thus may be affecting biochemistry cycles in soils. An experiment was conducted in a completely randomized design with factorial arrangement in the laboratory conditions. Soil was treated with one percentage of cow manure compost and 200 kg /ha of Urea. Soil samples were exposed to two levels temperatures (25 and 35) and two carbon dioxide concentrations (350 and 700 ppm) for a 60 day period of incubation with three replications. The results showed that elevated carbon dioxide at 25 and 35 °C had a different effect on total dissolved nitrogen. Elevated carbon dioxide at 25 °C had no significant effect on total dissolved nitrogen (TDN) while at 35 °C TDN was increased. Temperature and CO₂ had more effect on NO₃+NO₂ components of dissolved inorganic nitrogen than on NH₄. It seems that denitrification was higher in elevated CO₂ and high temperature treatments. Maximum and minimum rates of dissolved organic nitrogen (DON) occurred at 35 °C under elevated CO₂ faster than other treatments. This study revealed that elevated CO₂ and temperature enhanced nitrogen mineralization.

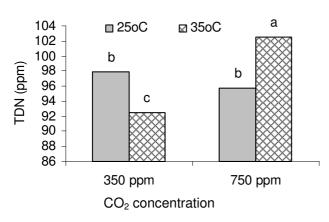
Key Words

Total dissolved nitrogen (TDN), total organic nitrogen (TON), nitrate, nitrite

Introduction

Fossil fuel combustion leading to elevated carbon dioxide and other green house gases may significantly increase earth temperature (Houghton *et al.* 1995). This may affect organic matter decomposition and mineralization of nutrients in soils. Phillips *et al.* (2002) showed an increase in organic matter degradation due to elevated atmospheric carbon dioxide. However in a three year experiment on a calcareous grassland soil Hungate *et al.* (1996) reported that carbon transformations in microbial biomass and organic carbon and nitrogen decomposition were not affected by increases in atmospheric CO₂. The authors further reported that soil nitrogen decomposition may vary due to increases in CO₂ among various ecosystems and even within a single ecosystem. Billings *et al.* (2002) investigated processes of the nitrogen cycle in desert soils exposed to elevated CO₂. They concluded that NH₄ volatilization is an important contributor to dissipated nitrogen gases in arid regions and low soil temperature limits microbial activity. The effect of elevated CO₂ on soil microbial activity was not similar in different seasons. It seems that temperature may be an important factor with respect to the CO₂ effect on nitrogen cycle in soil. The purpose of this work was to study the effect of temperature and CO₂ concentration on soluble forms of nitrogen in a calcareous soil in the north eastern of Iran.

Material and methods


An experiment was conducted in a completely randomized design with a factorial arrangement with two levels (25 and 35) temperatures and two carbon dioxide concentrations (350 and 700 ppm) during a 60 day period of incubation with three replications in the laboratory condition. Soil was initially treated with one percent of cattle manure compost and 200 kg/ha of urea. The pots contain 200 g of treated soil was transfer in CO₂ and temperature controlled chambers. In 0, 5, 10, 15, 30 and 60 days amounts of TDN, DIN, DON, sum of nitrate and nitrite and ammonium were measured in a 1:2.5 soil\water extract after 4 hour shaking time (Keeney and Nelson 1982; Cabrera and Beare 1993). Results were analyzed using MSTATC software and mean of treatment was compared using the Duncan test.

Results and discussion

The results showed that the highest and the lowest amount of total dissolved nitrogen (TDN) were for 35 °C at 350 and 750 ppm CO₂ concentrations. With increasing temperature, TDN decreased significantly at 350 ppm CO₂ concentration while temperature had different effect on TDN at 750 ppm CO₂ concentration (Figure 1). It seems that nitrogen availability decreased when temperature increased from 25 °C to 35 °C at the low CO₂ concentration (350 ppm) due to increasing microbial activity. It is also possible to assume that

^AFaculty members of Soil Science Dept, Agricultural College, Ferdowsi University of Mashhad, Mashhad, Iran.

^BFerdowsi University of Mashhad, Mashhad, Iran. Current address: Swedish University of Agricultural Science, Sweden.

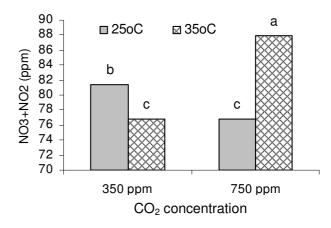
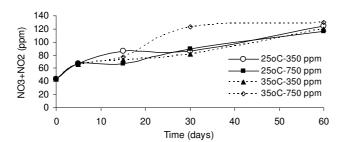



Figure 1. Effect of temperature and CO₂ concentration on total dissolved nitrogen (TDN).

Figure 2. Effect of temperature and CO_2 concentration on $NO_3 + NO_2$ concentration.

the higher temperature and 750 ppm CO₂ concentration increased the activity of some microorganisms responsible for nitrogen mineralization.

Since DIN is a major part of TND any changes in TDN concentration seem to be related in DIN. For this reason the effect of temperature and CO₂ concentration on DIN components (NH₄, NO₃ + NO₂) was quite similar to the TDN pattern. Changes in NO₃ + NO₂ concentrations also were similar to TDN and DIN at different temperatures and CO₂ concentrations (Figure 2) because ammonium concentration constituted only about 5 percent of DIN. In addition temperature and CO₂ concentration did not have a pronounced effect on ammonium concentration. Therefore, the most changes observed in DIN or TDN seems to be due to changes in NO₃ + NO₂ concentrations. Carnol *et al.* (2002) showed that nitrate production increased under an elevated CO₂ condition. They hypothesized that physiological adaptation or selection of nitrificatores could occur under elevated CO₂. The effect of temperature and CO₂ on NO₃ + NO₂ concentration during sixty days of incubation is shown in Figure 3. The results revealed that NO₃ + NO₂ concentration increased with incubation time in all treatments. Ammonium concentration showed a different pattern and its concentration decreased dramatically during incubation. Cabrera and Beare (1993) reported that nitrogen mineralization increased under higher CO₂ concentrations in a paddy soil. However some studies reported a negative effect of CO₂ on nitrogen availability (Cotrufo *et al.* 1994).

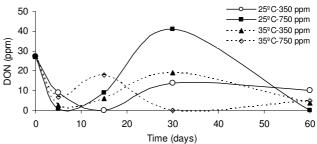


Figure 3. Effect of temperature and CO₂ on NO₃ + NO₂ concentration during two months of incubation.

Figure 4. Effect of temperature and CO₂ on DON concentration during two months of incubation.

Our investigation showed that the maximum and minimum dissolved organic nitrogen occurred faster than for other nitrogen forms at 35 °C under elevated CO₂ (Figure 4). It may be concluded that elevated carbon dioxide with increasing temperature enhanced the rate of nitrogen biochemical reactions in soil.

Conclusion

The results revealed that the effect of elevated CO_2 on different forms of nitrogen was different at 25 and 35 °C. Elevated CO_2 had a non significant effect on TDN concentration at 25 °C while TDN was increased at 35 °C. TDN components were also affected by temperature and CO_2 concentrations. Changes in DIN were due to the changes in $NO_3 + NO_2$ concentration. In general, the results of this experiment demonstrated that temperature and elevated CO_2 may increase the nitrogen mineralization. However, in order to acquire a better perspective more research is needed.

References

- Billings SA, Schaeffer SM, Evans RD (2002) Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO₂. *Soil Biology and Biochemistry* **34,** 1777-1784.
- Cabrera ML, Beare MH (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. *Soil Sci. Soc. Am. J.* **57**, 1007-1012
- Houghton JT, Meira Filho LG, Bruce J, Hoesung L, Callander BA, Haits E, Harris N, Maskell K (1995) Climate Change. (Cambridge University Press: Cambridge, UK).
- Hungate BA, Canadell J, Chapin FS (1996) Plant species mediate change in soil microbial N in response to elevated CO₂. *Ecology* **77**, 2505-2515.
- Phillips RL, Zak DR, Holmes WE, White DC (2002) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. *Oecologia* **131**, 236–244.
- Cotrufo MF, Ineson P, Rowland AP (1994) Decomposition of tree leaf litters grown under elevated CO₂: Effect of litter quality, *Plant and Soil* **163**, 121–130.
- Carnol M, Hogenboom L, Jach M E, Remacle J, Ceulemans R (2002) Elevated atmospheric CO₂ in open top chambers increases net nitrification and potential denitrification. *Global Change Biology* **8**, 590 598.
- Keeney DR, Nelson DW (1982) Steam distillation methods for exchangeable Ammonium, Nitrate, and Nitrite. In: 'Methods of Soil Analysis Part 2: Chemical and Microbiological Properties. 2nd ed'. (Ed RW Weaver) pp. 643-698 (American Society of Agronomy Inc.: Madison, WI).